18. Вибрации Гаргантюа
Пока Купер и Амелия Брэнд находятся на планете Миллер, Ромилли остается на «Эндюранс» и изучает черную дыру Гаргантюа. Он надеется, что точные данные позволят ему больше узнать о гравитационных аномалиях. Но более всего (как мне кажется) он надеется, что квантовые данные из сингулярности Гаргантюа (см. главу 26) просочатся через горизонт событий наружу и подскажут, как управлять гравитационными аномалиями (или, выражаясь емким языком Ромилли, как «решить гравитацию»).
Когда Амелия Брэнд возвращается с планеты Миллер, Ромилли говорит ей: «Я изучил черную дыру как мог, но не могу ничего сообщить твоему отцу. Мы принимаем сигналы, но назад они не проходят».
Что же изучал Ромилли? Он не уточняет, но я думаю, что он бы сосредоточился на вибрациях Гаргантюа, и предлагаю вам свою экстраполяцию событий.
В 1971 году Билл Пресс, мой студент в Калтехе, обнаружил, что черные дыры могут вибрировать на особых резонансных частотах, подобно тому как это происходит со скрипичной струной.
Если правильно ущипнуть струну, она издаст чистый тон – звуковую волну определенной частоты без каких-либо примесей. Если ущипнуть струну чуть по-другому, она издаст тот же чистый тон плюс более высокие обертоны. Иными словами, если струна правильно зажата и палец неподвижен, ее колебания дают звук, состоящий из дискретного набора частот – резонансных частот струны.
То же верно и для бокала, если провести пальцем по его краю, и для колокольчика, если ударить по нему молоточком. А также, как обнаружил Пресс, для черной дыры, если в ее недра упадет какой-либо объект. Год спустя еще один мой студент, Саул Теукольский, с помощью законов теории относительности вывел математическое описание резонансных колебаний для вращающейся черной дыры (вот главное преимущество преподавания в Калтехе – у нас не студенты, а гении!). Применяя уравнения Теукольского, мы, физики, можем вычислить резонансные частоты черной дыры, однако если дыра вращается очень быстро (как Гаргантюа), решение сильно усложняется. Усложняется настолько, что это удалось сделать лишь спустя 50 лет – команде ученых, ведущие роли в которой играли Хуан Янг и Аарон Циммерман, как можно догадаться, студенты Калтеха.
В сентябре 2013 года Ричи Кремер, реквизитор «Интерстеллар», попросил у меня данные наблюдений, которые Ромилли мог бы показать Амелии Брэнд. Разумеется, я обратился за помощью к лучшим мировым специалистам – Янгу и Циммерману. Они быстро составили таблицы с расчетными значениями частот резонансных колебаний Гаргантюа и скоростей их затухания (возникающего из-за передачи энергии гравитационным волнам). К этому они добавили результаты вымышленных наблюдений, примерно соответствующие расчетам, а я – изображения горизонта событий Гаргантюа (или скорее края ее тени), смоделированные командой по созданию визуальных эффектов Double Negative. И данные наблюдений Ромилли были готовы.
Когда Кристофер Нолан снимал сцену, где Ромилли обсуждает свои исследования с Амелией Брэнд, получилось, что Ромилли так и не показал ей данные наблюдений. Они лежали рядом на столе, но Ромилли не взял их в руки. Однако в Кип-версии эти данные играют ключевую роль.
Резонансные колебания Гаргантюа
На рис. 18.1 – первая страница данных, собранных Ромилли. Каждая строчка чисел на этой странице относится к одной из резонансных частот колебаний Гаргантюа.
Рис. 18.1. Первая страница данных, подготовленных Янгом и Циммерманом, чтобы Ромилли показал их Амелии Брэнд (Реквизит для съемок «Интерстеллар», с разрешения «Уорнер Бразерс».)
В первой колонке указаны коды формы колебаний Гаргантюа, а картинка внизу – кадр из отснятого Ромилли видеоматериала, подтверждающего (в Кип-версии) прогнозы. Во второй колонке – частота колебаний, а в третьей – скорость их затухания в соответствии с уравнениями Теукольского[63]. В четвертой и пятой колонках указана разница между теоретическими прогнозами и практическими наблюдениями.
В моей экстраполяции Ромилли находит несколько аномалий – серьезных расхождений между теорией и практикой. Эти расхождения он выделяет в таблице красным шрифтом. На первой странице (рис. 18.1) всего одна аномалия, но расхождение весьма серьезное – оно в 39 раз превышает погрешность измерений!
Эти аномалии, считает в Кип-версии Ромилли, могут пригодиться, чтобы «решить гравитацию» (понять, как использовать аномалии). Он хотел бы передать свои находки профессору Брэнду на Землю, но, на горе Ромилли, обратная связь недоступна.
Не может он также заглянуть внутрь Гаргантюа, чтобы извлечь важные квантовые данные из ее сингулярности (см. главу 26).
А еще Ромилли не знает, содержат ли обнаруженные им аномалии часть этих квантовых данных или нет. Быть может, благодаря столь быстрому вращению дыры какие-то квантовые данные просочились наружу, за горизонт, чем, собственно, и вызваны аномалии. Вот если бы Ромилли мог переслать данные наблюдений профессору Брэнду, тот, возможно, сумел бы в этом разобраться.
Позже (в главах 24–26) я расскажу гораздо больше о гравитационных аномалиях, а также о квантовых данных из недр Гаргантюа, благодаря которым эти аномалии можно укротить. А пока продолжим исследовать окрестности Гаргантюа и обратим внимание на еще одну планету, планету Манн.
Выяснив, что планета Миллер не подходит для заселения людьми, Купер и его команда отправляются на планету Манн.
Орбита планеты и отсутствие солнца
Я определил подходящую для планеты Манн орбиту, руководствуясь двумя киноэпизодами.
Во-первых, Дойл говорит, что путешествие к планете Манн займет месяцы. Отсюда вывод: когда «Эндюранс» прибывает к планете Манн, она должна находиться вдалеке от Гаргантюа, из ближайших окрестностей которой начался перелет. Во-вторых, практически сразу после того, как «Эндюранс» взрывается на орбите вокруг планеты Манн, экипаж обнаруживает, что «Эндюранс» затягивает к горизонту Гаргантюа. Отсюда вывод номер два: когда экипаж покидает планету Манн, она должна находиться вблизи Гаргантюа.
Чтобы выполнить оба условия, орбита планеты Манн должна быть сильно вытянутой. А чтобы планета, проходя вблизи Гаргантюа, не угодила в аккреционный диск, ее орбита должна проходить как можно выше или ниже экваториальной плоскости Гаргантюа, где этот диск располагается.
Исходя из этого орбита должна выглядеть примерно так, как показано на рис. 19.1, но отходить от Гаргантюа гораздо дальше – на 600 или больше радиусов дыры[64]. Напоминает орбиту кометы Галлея в Солнечной системе (рис. 7.5): подойдя к Гаргантюа, планета огибает ее и снова улетает прочь. Пространственный вихрь вблизи Гаргантюа заставляет планету облетать вокруг дыры один или два раза при каждом сближении, а также вызывает прецессию под большим углом, как показано на рисунке.
Рис. 19.1. Возможная орбита планеты Манн, вычисленная с помощью крайне дружелюбной интернет-программы, написанной Дэвидом Сароффом, см. demonstrations.wolfram.com/3DKerrBlackHoleOrbits
Планету Манн в ее перемещениях к черной дыре и от нее не может сопровождать солнце, поскольку вблизи Гаргантюа огромные приливные силы развели бы планету и солнце врозь, отправив их дальше по совершенно разным орбитам. Поэтому обогревать и освещать планету Манн, как и планету Миллер, может только слабый аккреционный диск Гаргантюа.
Путь «Эндюранс» к планете Манн начинается рядом с Гаргантюа и заканчивается вдали от нее. Такой перелет требует – в Кип-версии – двух гравитационных пращей (см. главу 7), одной в начале и другой – в конце.
В начале этого пути есть двойная проблема. Во-первых, находясь на орбите ожидания возле Гаргантюа, «Эндюранс» движется со скоростью втрое меньшей, чем световая (c/3), в неподходящем направлении – по круговой орбите вокруг Гаргантюа; движение нужно изменить на радиальное, от черной дыры. Во-вторых, скорость «Эндюранс» слишком мала – гравитационное притяжение Гаргантюа настолько сильное, что если «Эндюранс» ляжет на радиальную траекторию, не меняя скорости (c/3), Гаргантюа будет удерживать корабль, позволив ему продвинуться лишь на малую часть от расстояния до планеты Манн. Чтобы преодолеть гравитацию Гаргантюа и достичь планеты Манн на скорости, равной скорости планеты (примерно c/20), первая праща должна разогнать «Эндюранс» примерно до половины скорости света. Для этого Куперу нужно найти черную дыру средней массы в подходящем месте и с подходящей скоростью.